Functions#

Support functions for spinWannier.

Utility functions for the spinWannier package.

spinWannier.wannier_utils.S_xyz_expectation_values(eigvecs)#

For a k-space Hamiltonian Hk (function of kx and ky), calculate the eigen-energies and expectation values of spin Sx, Sy, Sz, at all the k-points in ‘kpoints’.

Parameters:
  • Hk (function) – A function returning a 2x2 FEG Hamiltonian.

  • kpoints (array of tuples) – Array of k-points.

Returns:

array of expectation values for energy and spin expectation values

Return type:

four arrays

spinWannier.wannier_utils.W_gauge_to_H_gauge(kpoints, O_mn_k_W_matrices, U_mn_k_matrices=[], hamiltonian=True)#
Transform from Wannier gauge to Hamiltonian gauge, i.e., for every k-point either diagonalize Hamiltonian

or use the matrix from previous Hamiltonian diagonalization (‘U_mn_k’) to transform some other operator to H gauge.

Parameters:
  • O_mn_k_W (numpy array) – The array (at all k-points) of k-space operators in Wannier gauge.

  • U_mn_k (numpy array) – The unitary matrices which diagonalize the Hamiltonian for each k-point.

  • hamiltonian (bool) – If True, the operator is Hamiltonian and the U_mn_k will be determined; for any other operator they have to be provided.

Returns:

The k-space operator dictionary in Hamiltonian gauge.

Return type:

dict

spinWannier.wannier_utils.band_with_spin_projection_under_threshold_for_kpoint(kpoint=(0.0, 0.0, 0.0), orbital_characters_considered={0: [4, 5, 6, 7, 8], 1: [1, 2, 3], 2: [1, 2, 3]}, threshold=0.25, PROCAR_file='PROCAR', n_ions=3, skip_lowest_bands=10)#

Return the lowest band with the spin projection below the threshold for ‘kpoint’.

Parameters:
  • kpoint (tuple) – The k-point.

  • orbital_characters_considered (dict) – The orbital characters considered.

  • threshold (float) – The threshold.

  • PROCAR_file (str) – The PROCAR file.

  • n_ions (int) – The number of ions.

  • skip_lowest_bands (int) – The number of lowest bands to skip.

Returns:

The lowest band with the spin projection below the threshold for ‘kpoint’.

Return type:

int

spinWannier.wannier_utils.check_file_exists(file_name)#
Check if file exists. If yes, add him a number in parentheses that does not exist.

Return the new name.

Parameters:

file_name (str) – The file name.

Returns:

The new file name.

Return type:

str

spinWannier.wannier_utils.coerce_R_vectors_to_basic_supercell(R_tr=(-3, 2, 0), R_mesh_ijk=(5, 5, 1))#

wannier90_hr.dat has sometimes the R vectors shifted (probably to facilitate the ‘minimal replice’ interpolation. Therefore, given some uniform grid centered at zero (e.g. 5x5x1) and a translated R vectors from hr_dat file (e.g. (-3,2,0) ), we would like to get the R vector’s image in the uniform grid, to be able to compare with our results. For (-3,2,0) this would be (2,2,0) in case of (5,5,1) grid (adding 5 to the ‘x’ coordinate). -> Algorithm: translate the ‘R’ by a supercell vector (in negative and positive direction and for x, y, z separately -> 8 possible translations: so searching the immediate vicinity of the R vector. Return a dictionary from the ‘hr_dat grid’ to the uniform grid.

Parameters:
  • R_tr (tuple of 3 ints) – The translated R vector.

  • R_mesh_ijk (tuple of 3 ints) – The uniform grid.

Returns:

The translated R vector in the uniform grid.

Return type:

tuple of 3 ints

spinWannier.wannier_utils.coerce_to_positive_angles(angles)#

Coerce angles to be positive (i.e., in the range [0, 2pi]).

Parameters:

angles (np.array) – The angles.

Returns:

The coerced angles.

Return type:

np.array

spinWannier.wannier_utils.convert_wann_TB_model_for_QuT(folder_in='./', folder_out='./', seedname_out='system', winfile='wannier90.win', wann_centres_file='wannier90_centres.xyz', hr_R_file='hr_R_dict.pickle', spn_R_file='spn_R_dict.pickle')#
Convert the outputs of my wannier to TB to Joaquin’s code.
Generates files

{system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}.uc …. unit cell {system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}.xyz …. wannier centers in cartesian coordinates {system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}_hr.dat …. real-space Hamiltonian {system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}_sxhr.dat …. real-space spin S_x operator {system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}_syhr.dat …. real-space spin S_y operator {system_name}_Mx{Mx:d}My{My:d}Mz{Mz:d}_E{E:.2f}_szhr.dat …. real-space spin S_z operator

Parameters:
  • winfile (str, optional) – _description_. Defaults to ‘wannier90.win’.

  • hr_R_file (str, optional) – _description_. Defaults to ‘hr_R_dict.pickle’.

  • spn_R_file (str, optional) – _description_. Defaults to ‘spn_R_dict.pickle’.

spinWannier.wannier_utils.dict_to_matrix(data_dict, num_wann, spin_index=False)#

Convert hr or spn dictionary to a matrix accepted by wannierBerri: first index is m, second n, third is the index of an R_vector from iRvec list.

Parameters:
  • data_dict (dict) – The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

  • num_wann (int) – The number of Wannier functions.

  • spin_index (bool) – If True, the dictionary has spin index.

Returns:

The array of R vectors. numpy array: The data matrix.

Return type:

numpy array

spinWannier.wannier_utils.eigenval_dict(eigenval_file='wannier90.eig', win_file='wannier90.win')#

Return the eigenvalues as a dictionary with the keys being the k-point tuples.

Parameters:
  • eigenval_file (str) – The name of the eigenvalues file.

  • win_file (str) – The name of the wannier90.win file.

Returns:

The eigenvalues dictionary.

Return type:

dict

spinWannier.wannier_utils.eigenval_for_kpoint(kpoint=(0.0, 0.0, 0.0), band=-4, eigenval_file='wannier90.eig', win_file='wannier90.win')#
Return the eigenvalue at ‘kpoint’ and ‘band’.

!! kpoint must be one from the kpoints in the wannier90.win file !!

Parameters:
  • kpoint (tuple) – The k-point.

  • band (int) – The band.

  • eigenval_file (str) – The eigenvalue file.

  • win_file (str) – The win file.

Returns:

The eigenvalue at ‘kpoint’ and ‘band’.

Return type:

float

spinWannier.wannier_utils.fermi_surface_spin_texture(kpoints2D, bands2D, Sx2D, Sy2D, Sz2D, ax=None, E=0, E_F=0, E_thr=0.01, fig_name=None, quiver_scale=1, scatter_for_quiver=True, scatter_size_quiver=1, scatter_size=0.8, reduce_by_factor=1, kmesh_limits=None, colorbar_Sx_lim=[-1, 1], colorbar_Sy_lim=[-1, 1], colorbar_Sz_lim=[-1, 1], n_points_for_one_angstrom_radius=120, ylim_margin=0.1, contour_for_quiver=True, contour_line_width=2.5, arrow_linewidth=0.005, arrow_head_width=3, quiver_angles='xy', quiver_scale_units='xy', inset_with_units_of_arrows=True, color_middle=(0.85, 0.85, 0.85, 1.0), savefig=True, showfig=True)#

Plot scatter points with a spin texture on a constant energy xy surface (probably at E=EF) if the energy difference of each given point is lower than some threshold. If there is more such points, grab the one with minimum difference from the energy surface.

  • E and E_thr in eV

kpoints2D: 2D array of shape (Nkpoints, 3) bands2D: 2D array of shape (Nkpoints, Nbands)

circumf_distance_of_arrows: distance between the arrows on the circumference of the circle = k (1/Angstrom) * phi (rad)

Parameters:
  • kpoints2D (np.array) – The 2D k-points.

  • bands2D (np.array) – The 2D bands.

  • Sx2D (np.array) – The 2D Sx.

  • Sy2D (np.array) – The 2D Sy.

  • Sz2D (np.array) – The 2D Sz.

  • ax (plt.axis, optional) – The axis.

  • E (float, optional) – The energy.

  • E_F (float, optional) – The Fermi energy.

  • E_thr (float, optional) – The energy threshold.

  • fig_name (str, optional) – The figure name.

  • quiver_scale (float, optional) – The quiver scale.

  • scatter_for_quiver (bool, optional) – If True, scatter for quiver.

  • scatter_size_quiver (int, optional) – The scatter size for quiver.

  • scatter_size (float, optional) – The scatter size.

  • reduce_by_factor (int, optional) – The reduce by factor.

  • kmesh_limits (list, optional) – The k-mesh limits.

  • colorbar_Sx_lim (list, optional) – The colorbar limits for Sx.

  • colorbar_Sy_lim (list, optional) – The colorbar limits for Sy.

  • colorbar_Sz_lim (list, optional) – The colorbar limits for Sz.

  • n_points_for_one_angstrom_radius (int, optional) – The number of points for one Angstrom radius.

  • ylim_margin (float, optional) – The y-limit margin.

  • contour_for_quiver (bool, optional) – If True, contour for quiver.

  • contour_line_width (float, optional) – The contour line width.

  • arrow_linewidth (float, optional) – The arrow line width.

  • arrow_head_width (int, optional) – The arrow head width.

  • quiver_angles (str, optional) – The quiver angles.

  • quiver_scale_units (str, optional) – The quiver scale units.

  • inset_with_units_of_arrows (bool, optional) – If True, the inset with units of arrows.

  • color_middle (tuple, optional) – The middle color.

  • savefig (bool, optional) – If True, save the figure.

  • showfig (bool, optional) – If True, show the figure.

spinWannier.wannier_utils.files_wann90_to_dict_pickle(model_dir='./', disentanglement=False)#

Convert wannier90 files to pickled dictionaries files.

Parameters:
  • model_dir (str) – The model directory.

  • disentanglement (bool) – If True, disentanglement is considered.

Returns:

The number of bands and the number of wannier functions.

Return type:

tuple

spinWannier.wannier_utils.get_2D_kpoint_mesh(G, limits=[-0.5, 0.5], Nk=100)#

Get a 2D mesh of k-points in the reciprocal space.

Parameters:
  • G (numpy array) – The reciprocal lattice vectors.

  • limits (list of 2 floats) – The limits of the mesh.

  • Nk (int) – The number of k-points in each direction.

Returns:

The k-points in the reciprocal space. list of tuples: The k-points in the Cartesian space.

Return type:

list of tuples

spinWannier.wannier_utils.get_DFT_kgrid(fin='wannier90.win')#

Get the ‘mp_grid’ from wannier90.win file which tells the k-grid used in the DFT calculation.

Parameters:

fin (str) – The name of the wannier90.win file.

Returns:

The k-grid.

Return type:

tuple of 3 ints

spinWannier.wannier_utils.get_kpoint_names(fwin='wannier90.win')#

Parse wannier90.win file to get k-point names as a list of tuples. The k-point names are in the ‘begin kpoints’ and ‘end kpoints’ section.

Parameters:

fwin (str) – The name of the wannier90.win file.

Returns:

The k-point names.

Return type:

list of tuples

spinWannier.wannier_utils.get_kpoint_path(kpoint_matrix, G, Nk)#

Interpolate between kpoints in the kpoint_matrix to obtain a k-point path with Nk points in each segment.

Parameters:
  • kpoint_matrix (list of tuples) – The k-point matrix.

  • G (numpy array) – The reciprocal lattice vectors.

  • Nk (int) – The number of k-points in each segment.

Returns:

The k-points in the reciprocal space. list of tuples: The k-points in the Cartesian space. list of floats: The k-point distance position.

Return type:

list of tuples

spinWannier.wannier_utils.get_skiprows_hr_dat(fin='wannier90_hr.dat')#

Get the number of skiprows in wannier90_hr.dat file.

Parameters:

fin (str) – The name of the hr.dat file.

Returns:

The number of skiprows.

Return type:

int

spinWannier.wannier_utils.hr_wann90_to_dict(fin_wannier90='wannier90_hr.dat')#

Convert wannier90 hr.dat to dictionary in the form that we are using: R vectors as keys and hopping as a complex number matrix as the values.

Parameters:

fin_wannier90 (str) – The name of the hr.dat file.

Returns:

The hopping dictionary.

Return type:

dict

spinWannier.wannier_utils.interpolate_operator(operator_dict, u_dis_dict, u_dict, latt_params, reciprocal_latt_params, R_grid, U_mn_k=None, hamiltonian=True, kpoints=[(0, 0, 0)], save_real_space=False, real_space_fname='hr_R_dict.dat', save_folder='./tb_model_wann90/', save_as_pickle=True, verbose=False)#
Takes operator O (Hamiltonian, spin-operator …) evaluated on a coarse DFT k-mesh and Hamiltonian eigenstates onto ‘kpoints’ using the
  1. (semi)unitary transformation defined by U_dis*U from the Hamiltonian gauge (eigenstate gauge) to the Wannier gauge,

  2. performing Fourier transform to the real-space using a set of lattice vectors

  3. inverse Fourier transforming to the k-space for all the k-points from ‘kpoints’.

Parameters:
  • operator_dict (dict) – The operator dictionary.

  • u_dis_dict (dict) – The disentangled unitary dictionary.

  • u_dict (dict) – The unitary dictionary.

  • latt_params (np.array) – The lattice parameters.

  • reciprocal_latt_params (np.array) – The reciprocal lattice parameters.

  • R_grid (list) – The R grid.

  • U_mn_k (dict, optional) – The Hamiltonian eigenstates.

  • hamiltonian (bool, optional) – If True, the Hamiltonian is calculated.

  • kpoints (list, optional) – The k-points.

  • save_real_space (bool, optional) – If True, save the real space.

  • real_space_fname (str, optional) – The real space file name.

  • save_folder (str, optional) – The save folder.

  • save_as_pickle (bool, optional) – If True, save as pickle.

Returns:

interpolated operator matrices (values) at the given k-points (keys) in the Hamiltonian gauge; unitary matrices which diagonalize the Hamiltonian (only if hamiltonian==True).

Return type:

dict

spinWannier.wannier_utils.load_dict(fin='spn_dict.pickle', text_file=False)#

If not text_file, than it’s binary.

Parameters:
  • fin (str) – The name of the file to load: spn_dict.pickle / hr_R_dict.pickle / u_dict.pickle / u_dis_dict.pickle spn_dict.dat / hr_R_dict.dat / u_dict.dat / u_dis_dict.dat

  • text_file (bool) – If True, load as a text file.

Returns:

The loaded dictionary.

Return type:

dict

spinWannier.wannier_utils.load_eigenvals(eigenval_file='wannier90.eig')#

Parse the wannier90 .eig file to get the k-point and band-resolved eigenvalues.

Parameters:

eigenval_file (str) – The name of the eigenvalues file.

Returns:

2D list (n_kpoints X n_bands) containing the eigenvalues.

Return type:

list of lists

spinWannier.wannier_utils.load_lattice_vectors(win_file='wannier90.win')#

Return a 3x3 matrix where 1st row is the 1st lattice vector etc.

Parameters:

win_file (str) – The name of the wannier90.win file.

Returns:

The lattice vectors matrix.

Return type:

numpy array

spinWannier.wannier_utils.magmom_OOP_or_IP(INCAR_path)#

Return True if MAGMOM in INCAR_path lies purely OOP, else return False.

Parameters:

INCAR_path (str) – The path to the INCAR file.

Returns:

True if MAGMOM in INCAR_path lies purely OOP, else False.

Return type:

bool

spinWannier.wannier_utils.magmom_direction(INCAR_path)#

Return 0 / 1 / 2 if spin is along x / y / z direction, respectively.

Parameters:

INCAR_path (str) – The path to the INCAR file.

Returns:

0 / 1 / 2 if spin is along x / y / z direction, respectively.

Return type:

int

spinWannier.wannier_utils.material_name_to_latex(material)#

Convert the material name to LaTeX format.

Parameters:

material (str) – The material name.

Returns:

The LaTeX formatted material name.

Return type:

str

spinWannier.wannier_utils.matrix_to_dict(data_matrix, Rvecs, spin_index=False, spin_names=['x', 'y', 'z'])#
Convert data matrix (e.g. the Ham_R or SS_R file from symmetrization) into a dictionary with

lattice vectors as keys and if spin_index is True then also (‘x’, ‘y’, ‘z’) for spin.

Parameters:
  • data_matrix (numpy array) – The data matrix.

  • Rvecs (numpy array) – The lattice vectors.

  • spin_index (bool) – If True, the dictionary has spin index.

  • spin_names (list of 3 str) – The spin names.

Returns:

The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

Return type:

dict

spinWannier.wannier_utils.operator_exp_values(eigvecs, Operator)#

Return the expectation values of Operator (an N x N matrix, where N is the size of the eigenvectors) for all eigenvectors.

Parameters:
  • eigvecs (array of matrices) – Array of M square matrices. Each N x N square matrix contains N eigenvectors (columns of the matrix).

  • Operator (matrix) – N x N Hermition matrix acting on the eigenvectors.

Returns:

M x N array of expectation values.

spinWannier.wannier_utils.outer(s, M)#

Outer product between a 2x2 spin matrix and a general orbital nxn M matrix, so that the spin blocks are the big blocks.

Parameters:
  • s (np.array) – Pauli (2 x 2) matrix sx, sy or sz

  • M (np.array) – general orbital (n x n) matrix

Returns:

The resulting matrix.

Return type:

np.array

spinWannier.wannier_utils.outer2(s, M)#

Works for s matrix of any dimension, but slower than ‘outer(s, M)’ Outer product between a nxn spin matrix and a general orbital nxn M matrix, so that the spin blocks are the big blocks.

Parameters:
  • s (np.array) – Pauli (2 x 2) matrix sx, sy or sz

  • M (np.array) – general orbital (n x n) matrix

Returns:

The resulting matrix.

Return type:

np.array

spinWannier.wannier_utils.parse_KPOINTS_file(KPOINTS_file_path)#

Parse the KPOINTS file.

Parameters:

KPOINTS_file_path (str) – The KPOINTS file path.

Returns:

The k-point matrix, the number of k-points, and the k-path ticks.

Return type:

tuple

spinWannier.wannier_utils.plot_bands_spin_texture(kpoints, kpath, kpath_ticks, Eigs_k, S_mn_k_H_x, S_mn_k_H_y, S_mn_k_H_z, NW, E_F=0, fout='spin_texture_1D_home_made.jpg', fig_caption='Wannier interpolation', yaxis_lim=[-5, 5], savefig=True, showfig=True)#

Output a figure with Sx, Sy, and Sz-projected band structure.

Parameters:
  • kpoints (list of tuples) – The k-points in the reciprocal space.

  • kpath (list of floats) – The k-point distance position.

  • kpath_ticks (list of floats) – The k-point ticks.

  • Eigs_k (dict) – The eigenvalues dictionary.

  • S_mn_k_H_x (dict) – The Sx operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_y (dict) – The Sy operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_z (dict) – The Sz operator dictionary in Hamiltonian gauge.

  • E_F (float) – The Fermi level in eV.

  • fout (str) – The name of the output file.

  • fig_caption (str) – The caption of the figure.

  • yaxis_lim (list of 2 floats) – The y-axis limits.

  • savefig (bool) – If True, save the figure.

  • showfig (bool) – If True, show the figure.

spinWannier.wannier_utils.read_PROCAR_lines_for_kpoint(kpoint=(0.0, 0.0, 0.0), PROCAR_file='PROCAR')#

Get the section of PROCAR belonging to the first occurence of ‘kpoint’ in PROCAR_file.

Parameters:
  • kpoint (tuple) – The k-point.

  • PROCAR_file (str) – The PROCAR file.

Returns:

The lines of PROCAR belonging to the first occurence of ‘kpoint’.

Return type:

list

spinWannier.wannier_utils.real_space_grid_from_hr_dat(fname='wannier90_hr.dat')#

Get the real-space grid from the seedname_hr.dat file. See Pizzi 2020 Sec. 4.2.

Parameters:

fname (str) – The name of the hr.dat file.

Returns:

The real-space grid.

Return type:

list of tuples

spinWannier.wannier_utils.real_to_W_gauge(kpoints, O_mn_R_W)#

Perform inverse Fourier transformation from real-space operator to k-space in Wannier gauge.

Parameters:
  • kpoints (list of tuples) – The k-points.

  • O_mn_R_W (dict) – The real-space operator dictionary.

Returns:

The k-space operator dictionary.

Return type:

dict

spinWannier.wannier_utils.real_to_W_gauge_accelerated(kpoints, O_mn_R_W)#

Perform inverse Fourier transformation from real-space operator to k-space in Wannier gauge.

Parameters:
  • kpoints (list of tuples) – The k-points.

  • O_mn_R_W (dict) – The real-space operator dictionary.

Returns:

Array of O_mn matrices.

Return type:

numpy array

spinWannier.wannier_utils.reciprocal_lattice_vectors(real_space_lattice_vector_matrix)#

Return the reciprocal lattice vectors from the real-space lattice vectors.

Parameters:

real_space_lattice_vector_matrix (numpy array) – The real-space lattice vectors matrix.

Returns:

The reciprocal lattice vectors.

Return type:

list of numpy arrays

spinWannier.wannier_utils.replace_middle_of_cmap_with_custom_color(color_middle=(0.85, 0.85, 0.85, 1.0), middle_range=0.1)#

Replace the middle of the colormap with a custom color.

Parameters:
  • color_middle (tuple) – The middle color.

  • middle_range (float) – The middle range.

Returns:

The new colormap.

Return type:

cmap

spinWannier.wannier_utils.save_bands_and_spin_texture(kpoints_rec, kpoints_cart, kpath, Eigs_k, S_mn_k_H_x, S_mn_k_H_y, S_mn_k_H_z, kmesh_2D=False, fout='bands_spin.pickle', save_folder='./tb_model_wann90/')#

Save the bands and spin texture information for given kpoints.

Parameters:
  • kpoints_rec (list of tuples) – The k-points in the reciprocal space.

  • kpoints_cart (list of tuples) – The k-points in the Cartesian space.

  • kpath (list of floats) – The k-point distance position.

  • Eigs_k (dict) – The eigenvalues dictionary.

  • S_mn_k_H_x (dict) – The Sx operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_y (dict) – The Sy operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_z (dict) – The Sz operator dictionary in Hamiltonian gauge.

  • kmesh_2D (bool) – If True, the k-points are in a 2D mesh.

  • fout (str) – The name of the output file.

  • save_folder (str) – The folder where to save the file

spinWannier.wannier_utils.save_bands_and_spin_texture_old(kpoints_rec, kpoints_cart, kpath, Eigs_k, S_mn_k_H_x, S_mn_k_H_y, S_mn_k_H_z, kmesh_2D=False, fout='bands_spin.pickle', save_folder='./tb_model_wann90/')#

Save the bands and spin texture information for given kpoints.

Parameters:
  • kpoints_rec (list of tuples) – The k-points in the reciprocal space.

  • kpoints_cart (list of tuples) – The k-points in the Cartesian space.

  • kpath (list of floats) – The k-point distance position.

  • Eigs_k (dict) – The eigenvalues dictionary.

  • S_mn_k_H_x (dict) – The Sx operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_y (dict) – The Sy operator dictionary in Hamiltonian gauge.

  • S_mn_k_H_z (dict) – The Sz operator dictionary in Hamiltonian gauge.

  • kmesh_2D (bool) – If True, the k-points are in a 2D mesh.

  • fout (str) – The name of the output file.

  • save_folder (str) – The folder where to save the file

spinWannier.wannier_utils.selected_band_plot(band=0)#
spinWannier.wannier_utils.split_spn_dict(spn_dict, spin_names=['x', 'y', 'z'])#
Split dictionary with keys as ((Rx, Ry, Rz), spin_component_name) to three dictionaries

with keys as (Rx, Ry, Rz).

Parameters:
  • spn_dict (dict) – The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

  • spin_names (list of 3 str) – The spin names.

Returns:

The dictionary with R vectors as keys and hopping as a complex number matrix as the values. dict: The dictionary with R vectors as keys and hopping as a complex number matrix as the values. dict: The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

Return type:

dict

spinWannier.wannier_utils.spn_to_dict(model_dir='./', fwin='wannier90.win', fin='wannier90.spn', formatted=False, fout='spn_dict.pickle', save_as_text=False)#

Convert wannier90.spn file to a dictionary object and save as pickle. If ‘text_file’ == True, then save as a human-readable text file.

Parameters:
  • model_dir (str) – The directory of the model.

  • fwin (str) – The win file.

  • fin (str) – The spn file.

  • formatted (bool) – If True, the spn file is formatted.

  • fout (str) – The output file.

  • save_as_text (bool) – If True, save as a text file.

Returns:

The spin-projection matrices.

Return type:

np.array

spinWannier.wannier_utils.u_to_dict(fin='wannier90_u.mat', fout='u_dict.pickle', text_file=False, write_sparse=False)#

Convert _u.mat from wannier90 to pickled python dictionary.

Parameters:
  • fin (str) – The input file.

  • fout (str) – The output file.

  • text_file (bool) – If True, save as a text file.

  • write_sparse (bool) – If True, write the sparse matrix.

Returns:

The number of bands and the number of wannier functions.

Return type:

tuple

spinWannier.wannier_utils.uniform_real_space_grid(R_mesh_ijk=(5, 5, 1))#
From the maxima in each direction, make a regular mesh

(-R_max_i, +R_max_i) x (-R_max_j, +R_max_j) x (-R_max_k, +R_max_k).

Parameters:

R_mesh_ijk (tuple of 3 ints) – The number of mesh points in each direction.

Returns:

The real-space grid.

Return type:

list of tuples

spinWannier.wannier_utils.unite_spn_dict(spn_x_dict, spn_y_dict, spn_z_dict, spin_names=['x', 'y', 'z'])#
Unite dictionary with keys as (Rx, Ry, Rz) to three dictionaries

with keys as ((Rx, Ry, Rz), spin_component_name).

Parameters:
  • spn_x_dict (dict) – The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

  • spn_y_dict (dict) – The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

  • spn_z_dict (dict) – The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

  • spin_names (list of 3 str) – The spin names.

Returns:

The dictionary with R vectors as keys and hopping as a complex number matrix as the values.

Return type:

dict

spinWannier.wannier_utils.wannier_energy_windows(wann_bands_lims, eigenval_file='wannier90.eig')#

Get energy window limits for wannierization.

Parameters:
  • wann_bands_lims (tuple of two int) – Zero-indexed indices of the minimum and maximum bands included in wannierization. E.g. (0, 21) if the bottom 22 bands should be wannierized.

  • E_F (float, optional) – The Fermi level in eV. Defaults to 0.0.

  • eigenval_file (str, optional) – Wannier90 .eig file name. Defaults to “wannier90.eig”.

Returns:

the wannierization and frozen energy minima and maxima.

Return type:

4 floats

Utility functions for the wannier_quality method of the spinWannier.WannierTBmodel.WannierTBmodel class.

spinWannier.wannier_quality_utils.compare_eigs_bandstructure_at_exact_kpts(dft_bands, wann_bands, num_kpoints, num_wann, f_name_out='WannierBerri_quality_error_Fermi_corrected.dat')#

Compare the DFT and Wannierized band structures at the exact k-points.

Parameters:
  • dft_bands (np.array) – DFT bands.

  • wann_bands (np.array) – Wannierized bands.

  • num_kpoints (int) – Number of k-points.

  • num_wann (int) – Number of Wannierized bands.

  • f_name_out (str, optional) – Output file name. Defaults to ‘WannierBerri_quality_error_Fermi_corrected.dat’.

Returns:

Array with the DFT energy in the first column and the Wannierization error in the second column.

Return type:

np.array

spinWannier.wannier_quality_utils.duplicate_kpoints_for_home_made(data, NK)#

Duplicate also the last k-point (in dictionary the keys are unique, so actually the data in the dictionaries where keys are k-points contain only one of each k-point, so if k-path starts and ends with the same k-point, only the first one is recorded.

Parameters:
  • data (np.array) – Data to duplicate.

  • NK (int) – Number of k-points.

Returns:

Duplicated data.

Return type:

np.array

spinWannier.wannier_quality_utils.get_NKpoints(OUTCAR='OUTCAR')#

Return number of kpoints from bands calculation from OUTCAR.

Parameters:

OUTCAR (str, optional) – OUTCAR path. Defaults to ‘OUTCAR’.

Returns:

number of k-points stated in the OUTCAR

Return type:

int

spinWannier.wannier_quality_utils.get_band_at_kpoint_from_EIGENVAL(EIGENVAL_path='./EIGENVAL', target_band=1, target_kpoint_string='0.0000000E+00  0.0000000E+00  0.0000000E+00')#

Get the energy of the target_band at the target_kpoint from the EIGENVAL file.

Parameters:
  • EIGENVAL_path (str, optional) – Path to the EIGENVAL file. Defaults to ‘./EIGENVAL’.

  • target_band (int, optional) – Target band. Defaults to 1.

  • target_kpoint_string (str, optional) – Target k-point string. Defaults to ‘0.0000000E+00 0.0000000E+00 0.0000000E+00’.

Returns:

Energy of the target_band at the target_kpoint.

Return type:

float

spinWannier.wannier_quality_utils.get_fermi(path='.')#

Extract Fermi energy from the DOSCAR file.

Parameters:

path (str, optional) – Path to the directory with the DOSCAR file. Defaults to “.”.

Returns:

Fermi energy in eV.

Return type:

float

spinWannier.wannier_quality_utils.get_fermi_corrected_by_matching_bands(nsc_calculation_path='../0_nsc_for_wann_25x25_frozmaxmargin_0.2eV', corrected_at_kpoint='0.0000000E+00  0.0000000E+00  0.0000000E+00', corrected_at_band=11, sc_calculation_path='../sc', fout_name='FERMI_ENERGY_corrected.in')#

Get the Fermi energy from the self-consistent calculation and correct it so that the band at the target_kpoint and target_band is at the same energy in the non-self-consistent calculation.

Parameters:
  • path (str, optional) – Path to the directory with the DOSCAR file. Defaults to “.”.

  • nsc_calculation_path (str, optional) – Path to the non-self-consistent calculation directory. Defaults to ‘../0_nsc_for_wann_25x25_frozmaxmargin_0.2eV’.

  • corrected_at_kpoint (str, optional) – Target k-point string. Defaults to ‘0.0000000E+00 0.0000000E+00 0.0000000E+00’.

  • corrected_at_band (int, optional) – Target band. Defaults to 11.

  • sc_calculation_path (str, optional) – Path to the self-consistent calculation directory. Defaults to “../sc”.

  • fout_name (str, optional) – Output file name. Defaults to “FERMI_ENERGY_corrected.in”.

Returns:

Corrected Fermi energy in eV.

Return type:

float

spinWannier.wannier_quality_utils.get_frozen_window_min_max(wannier90winfile='wannier90.win')#

Get the frozen window min and max from the wannier90.win file.

Parameters:

wannier90winfile (str, optional) – Path to the wannier90.win file. Defaults to ‘wannier90.win’.

Returns:

Frozen window min. float: Frozen window max.

Return type:

float

spinWannier.wannier_quality_utils.integrate_error(error_by_energy, E_min=-1000.0, E_max=1000.0)#

Integrate the error in ‘f_name_in’ in the energy range [E_min, E_max] included.

Parameters:
  • error_by_energy (np.array) – Error vs. energy.

  • E_min (float, optional) – Minimum energy. Defaults to -1e3.

  • E_max (float, optional) – Maximum energy. Defaults to 1e3.

Returns:

Array with the integrated error.

Return type:

np.array

spinWannier.wannier_quality_utils.parse_eigenval_file(fin, spin=0)#

Parse the EIGENVAL file and return the kpoints, bands, number of kpoints, and number of bands.

Parameters:
  • fin (str) – Path to the EIGENVAL file.

  • spin (int, optional) – Spin index. Defaults to 0.

Returns:

kpoints. np.array: bands. int: number of kpoints. int: number of bands.

Return type:

np.array

spinWannier.wannier_quality_utils.plot_err_vs_bands(kpoints, kpath, kpath_ticks, Eigs_k, E_diff, S_diff, NW, fout='ERRORS_ALL_band_structure.jpg', yaxis_lim=None, savefig=True, showfig=True)#

Output a figure with RMSE_E, RMSE_Sx, RMSE_Sy, and RMSE_Sz-projected band structure.

Parameters:
  • kpoints (np.array) – kpoints.

  • kpath (np.array) – kpath.

  • kpath_ticks (list) – kpath ticks.

  • Eigs_k (dict) – Eigs_k.

  • E_diff (np.array) – E_diff.

  • S_diff (np.array) – S_diff.

  • fout (str, optional) – Output file name. Defaults to ‘ERRORS_ALL_band_structure.jpg’.

  • yaxis_lim (list, optional) – y-axis limits. Defaults to None.

  • savefig (bool, optional) – Save the figure. Defaults to True.

  • showfig (bool, optional) – Show the figure. Defaults to True.

spinWannier.wannier_quality_utils.plot_err_vs_energy(error_by_energy, Ef, title='Wannierization RMS error vs. energy', fig_name_out='wannier_quality_error_by_energy.png', savefig=True, showfig=True)#

Plot the error vs. energy.

Parameters:
  • error_by_energy (np.array) – Error vs. energy.

  • Ef (float) – Fermi energy.

  • title (str, optional) – Title of the plot. Defaults to “Wannierization RMS error vs. energy”.

  • fig_name_out (str, optional) – Output file name. Defaults to “wannier_quality_error_by_energy.png”.

  • savefig (bool, optional) – Save the figure. Defaults to True.

  • showfig (bool, optional) – Show the figure. Defaults to True.

spinWannier.wannier_quality_utils.vasp_calc_collinear(EIGENVAL_path='./EIGENVAL')#

Get the N_eig from the EIGENVAL file.

Parameters:

EIGENVAL_path (str, optional) – Path to the EIGENVAL file. Defaults to ‘./EIGENVAL’.

Returns:

N_eig (1 - non-spin-polarized, 2 - spin-polarized).

Return type:

int